Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0291393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38289939

RESUMEN

Thermal performance curves (TPCs) depict variation in vital rates in response to temperature and have been an important tool to understand ecological and evolutionary constraints on the thermal sensitivity of ectotherms. TPCs allow for the calculation of indicators of thermal tolerance, such as minimum, optimum, and maximum temperatures that allow for a given metabolic function. However, these indicators are computed using only responses from surviving individuals, which can lead to underestimation of deleterious effects of thermal stress, particularly at high temperatures. Here, we advocate for an integrative framework for assessing thermal sensitivity, which combines both vital rates and survival probabilities, and focuses on the temperature interval that allows for population persistence. Using a collated data set of Lepidopteran development rate and survival measured on the same individuals, we show that development rate is generally limiting at low temperatures, while survival is limiting at high temperatures. We also uncover differences between life stages and across latitudes, with extended survival at lower temperatures in temperate regions. Our combined performance metric demonstrates similar thermal breadth in temperate and tropical individuals, an effect that only emerges from integration of both development and survival trends. We discuss the benefits of using this framework in future predictive and management contexts.


Asunto(s)
Frío , Insectos , Humanos , Animales , Temperatura
2.
PLoS One ; 17(9): e0273897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36054126

RESUMEN

Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300-3290 µatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in P. strigosa and P. astreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies S. siderea and P. astreoides as potential 'winners' on future Caribbean coral reefs due to their resilience under projected global change stressors, while P. strigosa will likely be a 'loser' due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Región del Caribe , Arrecifes de Coral , Ecosistema , Concentración de Iones de Hidrógeno , Agua de Mar
3.
PLoS One ; 17(1): e0249155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35041688

RESUMEN

Disease, storms, ocean warming, and pollution have caused the mass mortality of reef-building corals across the Caribbean over the last four decades. Subsequently, stony corals have been replaced by macroalgae, bacterial mats, and invertebrates including soft corals and sponges, causing changes to the functioning of Caribbean reef ecosystems. Here we describe changes in the absolute cover of benthic reef taxa, including corals, gorgonians, sponges, and algae, at 15 fore-reef sites (12-15m depth) across the Belizean Barrier Reef (BBR) from 1997 to 2016. We also tested whether Marine Protected Areas (MPAs), in which fishing was prohibited but likely still occurred, mitigated these changes. Additionally, we determined whether ocean-temperature anomalies (measured via satellite) or local human impacts (estimated using the Human Influence Index, HII) were related to changes in benthic community structure. We observed a reduction in the cover of reef-building corals, including the long-lived, massive corals Orbicella spp. (from 13 to 2%), and an increase in fleshy and corticated macroalgae across most sites. These and other changes to the benthic communities were unaffected by local protection. The covers of hard-coral taxa, including Acropora spp., Montastraea cavernosa, Orbicella spp., and Porites spp., were negatively related to the frequency of ocean-temperature anomalies. Only gorgonian cover was related, negatively, to our metric of the magnitude of local impacts (HII). Our results suggest that benthic communities along the BBR have experienced disturbances that are beyond the capacity of the current management structure to mitigate. We recommend that managers devote greater resources and capacity to enforcing and expanding existing marine protected areas and to mitigating local stressors, and most importantly, that government, industry, and the public act immediately to reduce global carbon emissions.


Asunto(s)
Antozoos , Animales
4.
Ecol Lett ; 24(12): 2796-2811, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34608730

RESUMEN

Microbiomes have profound effects on host fitness, yet we struggle to understand the implications for host ecology. Microbiome influence on host ecology has been investigated using two independent frameworks. Classical ecological theory powerfully represents mechanistic interactions predicting environmental dependence of microbiome effects on host ecology, but these models are notoriously difficult to evaluate empirically. Alternatively, host-microbiome feedback theory represents impacts of microbiome dynamics on host fitness as simple net effects that are easily amenable to experimental evaluation. The feedback framework enabled rapid progress in understanding microbiomes' impacts on plant ecology, and can also be applied to animal hosts. We conceptually integrate these two frameworks by deriving expressions for net feedback in terms of mechanistic model parameters. This generates a precise mapping between net feedback theory and classic population modelling, thereby merging mechanistic understanding with experimental tractability, a necessary step for building a predictive understanding of microbiome influence on host ecology.


Asunto(s)
Microbiota , Animales , Ecología , Retroalimentación
5.
Res Synth Methods ; 12(4): 537-556, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33932323

RESUMEN

Meta-regression can be used to examine the association between effect size estimates and the characteristics of the studies included in a meta-analysis using regression-type methods. By searching for those characteristics (i.e., moderators) that are related to the effect sizes, we seek to identify a model that represents the best approximation to the underlying data generating mechanism. Model selection via testing, either through a series of univariate models or a model including all moderators, is the most commonly used approach for this purpose. Here, we describe alternative model selection methods based on information criteria, multimodel inference, and relative variable importance. We demonstrate their application using an illustrative example and present results from a simulation study to compare the performance of the various model selection methods for identifying the true model across a wide variety of conditions. Whether information-theoretic approaches can also be used not only in combination with maximum likelihood (ML) but also restricted maximum likelihood (REML) estimation was also examined. The results indicate that the conventional methods for model selection may be outperformed by information-theoretic approaches. The latter are more often among the set of best methods across all of the conditions simulated and can have higher probabilities for identifying the true model under particular scenarios. Moreover, their performance based on REML estimation was either very similar to that from ML estimation or at times even better depending on how exactly the REML likelihood was computed. These results suggest that alternative model selection methods should be more widely applied in meta-regression.


Asunto(s)
Simulación por Computador , Metaanálisis como Asunto
6.
Am Nat ; 195(4): 591-602, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32216667

RESUMEN

The potential for either pathogens or mutualists to alter the outcome of interactions between host species has been clearly demonstrated experimentally, but our understanding of their joint influence remains limited. Individually, pathogens and mutualists can each stabilize (via negative feedback) or destabilize (via positive feedback) host-host interactions. When pathogens and mutualists are both present, the potential for simultaneous positive and negative feedbacks can generate a wide range of possible effects on host species coexistence and turnover. Extending existing theoretical frameworks, we explore the range of dynamics generated by simultaneous interactions with pathogens and mutualists and identify the conditions for pathogen or mutualist mediation of host coexistence. We then explore the potential role of microbial mutualists and pathogens in plant species turnover during succession. We show how a combination of positive and negative plant-microbe feedbacks can generate a coexistence state that is part of a set of alternative stable states. This result implies that the outcomes of coexistence from classical plant-soil feedback experiments may be susceptible to disturbances and that empirical investigations of microbially mediated coexistence would benefit from consideration of interactive effects of feedbacks generated from different distinct components of the plant microbiome.


Asunto(s)
Biota , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Simbiosis , Biomasa , Modelos Teóricos , Desarrollo de la Planta , Microbiología del Suelo
7.
Genetics ; 213(1): 113-125, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31345993

RESUMEN

Crossovers are essential in meiosis of most organisms to ensure the proper segregation of chromosomes, but improper placement of crossovers can result in nondisjunction and aneuploidy in progeny. In particular, crossovers near the centromere can cause nondisjunction. Centromere-proximal crossovers are suppressed by what is termed the centromere effect, but the mechanism is unknown. Here, we investigate contributions to centromere-proximal crossover suppression in Drosophila melanogaster We mapped a large number of centromere-proximal crossovers, and find that crossovers are essentially absent from the highly repetitive (HR)-heterochromatin surrounding the centromere but occur at a low frequency within the less-repetitive (LR)-heterochromatic region and adjacent euchromatin. Previous research suggested that flies that lack the Bloom syndrome helicase (Blm) lose meiotic crossover patterning, including the centromere effect. Mapping of centromere-proximal crossovers in Blm mutants reveals that the suppression within the HR-heterochromatin is intact, but the distance-dependent centromere effect is lost. We conclude that centromere-proximal crossovers are suppressed by two separable mechanisms: an HR-heterochromatin effect that completely suppresses crossovers in the HR-heterochromatin, and the centromere effect, which suppresses crossovers with a dissipating effect with distance from the centromere.


Asunto(s)
Centrómero/genética , Intercambio Genético , Heterocromatina/genética , Animales , Cromosomas de Insectos/genética , ADN Helicasas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Meiosis
8.
Ecol Lett ; 22(8): 1274-1284, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31149765

RESUMEN

Plant-soil feedback (PSF) theory provides a powerful framework for understanding plant dynamics by integrating growth assays into predictions of whether soil communities stabilise plant-plant interactions. However, we lack a comprehensive view of the likelihood of feedback-driven coexistence, partly because of a failure to analyse pairwise PSF, the metric directly linked to plant species coexistence. Here, we determine the relative importance of plant evolutionary history, traits, and environmental factors for coexistence through PSF using a meta-analysis of 1038 pairwise PSF measures. Consistent with eco-evolutionary predictions, feedback is more likely to mediate coexistence for pairs of plant species (1) associating with similar guilds of mycorrhizal fungi, (2) of increasing phylogenetic distance, and (3) interacting with native microbes. We also found evidence for a primary role of pathogens in feedback-mediated coexistence. By combining results over several independent studies, our results confirm that PSF may play a key role in plant species coexistence, species invasion, and the phylogenetic diversification of plant communities.


Asunto(s)
Micorrizas , Filogenia , Microbiología del Suelo , Plantas , Suelo
9.
Proc Biol Sci ; 286(1900): 20182840, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30940056

RESUMEN

We conducted a 93-day experiment investigating the independent and combined effects of acidification (280-3300 µatm pCO2) and warming (28°C and 31°C) on calcification and linear extension rates of four key Caribbean coral species ( Siderastrea siderea, Pseudodiploria strigosa, Porites astreoides, Undaria tenuifolia) from inshore and offshore reefs on the Belize Mesoamerican Barrier Reef System. All species exhibited nonlinear declines in calcification rate with increasing pCO2. Warming only reduced calcification in Ps. strigosa. Of the species tested, only S. siderea maintained positive calcification in the aragonite-undersaturated treatment . Temperature and pCO2 had no effect on the linear extension of S. siderea and Po. astreoides, and natal reef environment did not impact any parameter examined. Results suggest that S. siderea is the most resilient of these corals to warming and acidification owing to its ability to maintain positive calcification in all treatments, Ps. strigosa and U. tenuifolia are the least resilient, and Po. astreoides falls in the middle. These results highlight the diversity of calcification responses of Caribbean corals to projected global change.


Asunto(s)
Antozoos/fisiología , Calcificación Fisiológica , Calentamiento Global , Calor/efectos adversos , Agua de Mar/química , Animales , Belice , Región del Caribe , Concentración de Iones de Hidrógeno , Especificidad de la Especie
10.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404885

RESUMEN

Parasite epidemics can depend on priority effects, and parasite priority effects can result from the host immune response to prior infection. Yet we lack experimental evidence that such immune-mediated priority effects influence epidemics. To address this research gap, we manipulated key host immune hormones, then measured the consequences for within-host parasite interactions, and ultimately parasite epidemics in the field. Specifically, we applied plant immune-signalling hormones to sentinel plants, embedded into a wild host population, and tracked foliar infections caused by two common fungal parasites. Within-host individuals, priority effects were altered by the immune-signalling hormone, salicylic acid (SA). Scaling up from within-host interactions, hosts treated with SA experienced a lower prevalence of a less aggressive parasite, increased burden of infection by a more aggressive parasite, and experienced fewer co-infections. Together, these results indicate that by altering within-host priority effects, host immune hormones can drive parasite epidemics. This study therefore experimentally links host immune hormones to within-host priority effects and parasite epidemics, advancing a more mechanistic understanding of how interactions among parasites alter their epidemics.


Asunto(s)
Colletotrichum/fisiología , Festuca/inmunología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Rhizoctonia/fisiología , Ciclopentanos/metabolismo , Festuca/microbiología , Interacciones Huésped-Parásitos , North Carolina , Oxilipinas/metabolismo , Enfermedades de las Plantas/inmunología , Ácido Salicílico/metabolismo
11.
Commun Biol ; 1: 116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271996

RESUMEN

Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

13.
J Exp Biol ; 221(Pt 12)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29724777

RESUMEN

Critical temperatures are widely used to quantify the upper and lower thermal limits of organisms. But measured critical temperatures often vary with methodological details, leading to spirited discussions about the potential consequences of stress and acclimation during the experiments. We review a model based on the simple assumption that failure rate increases with increasing temperature, independent of previous temperature exposure, water loss or metabolism during the experiment. The model predicts that mean critical thermal maximal temperature (CTmax) increases non-linearly with starting temperature and ramping rate, a pattern frequently observed in empirical studies. We then develop a statistical model that estimates a failure rate function (the relationship between failure rate and current temperature) using maximum likelihood; the best model accounts for 58% of the variation in CTmax in an exemplary dataset for tsetse flies. We then extend the model to incorporate potential effects of stress and acclimation on the failure rate function; the results show how stress accumulation at low ramping rate may increase the failure rate and reduce observed values of CTmax We also applied the model to an acclimation experiment with hornworm larvae that used a single starting temperature and ramping rate; the analyses show that increasing acclimation temperature significantly reduced the slope of the failure rate function, increasing the temperature at which failure occurred. The model directly applies to critical thermal minima, and can utilize data from both ramping and constant-temperature assays. Our model provides a new approach to analyzing and interpreting critical temperatures.


Asunto(s)
Aclimatación , Manduca/fisiología , Temperatura , Moscas Tse-Tse/fisiología , Animales , Larva/crecimiento & desarrollo , Larva/fisiología , Manduca/crecimiento & desarrollo , Modelos Biológicos , Modelos Estadísticos
14.
Ecol Lett ; 20(10): 1285-1294, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28868666

RESUMEN

Parasite epidemics may be influenced by interactions among symbionts, which can depend on past events at multiple spatial scales. Within host individuals, interactions can depend on the sequence in which symbionts infect a host, generating priority effects. Across host individuals, interactions can depend on parasite phenology. To test the roles of parasite interactions and phenology in epidemics, we embedded multiple cohorts of sentinel plants, grown from seeds with and without a vertically transmitted symbiont, into a wild host population, and tracked foliar infections caused by three common fungal parasites. Within hosts, parasite growth was influenced by coinfections, but coinfections were often prevented by priority effects among symbionts. Across hosts, parasite phenology altered host susceptibility to secondary infections, symbiont interactions and ultimately the magnitude of parasite epidemics. Together, these results indicate that parasite phenology can influence parasite epidemics by altering the sequence of infection and interactions among symbionts within host individuals.


Asunto(s)
Hongos , Interacciones Huésped-Parásitos , Animales , Parásitos
15.
Sci Data ; 3: 160028, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27163938

RESUMEN

Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems.


Asunto(s)
Bases de Datos Factuales , Micorrizas , Plantas , Simbiosis , Biomasa , Filogenia , Plantas/microbiología
16.
New Phytol ; 199(2): 541-549, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23594373

RESUMEN

Plants form ubiquitous associations with diverse microbes. These interactions range from parasitism to mutualism, depending partly on resource supplies that are being altered by global change. While many studies have considered the separate effects of pathogens and mutualists on their hosts, few studies have investigated interactions among microbial mutualists and pathogens in the context of global change. Using two wild grass species as model hosts, we grew individual plants under ambient or elevated CO(2), and ambient or increased soil phosphorus (P) supply. Additionally, individuals were grown with or without arbuscular mycorrhizal inoculum, and after 2 wk, plants were inoculated or mock-inoculated with a phloem-restricted virus. Under elevated CO(2), mycorrhizal association increased the titer of virus infections, and virus infection reciprocally increased the colonization of roots by mycorrhizal fungi. Additionally, virus infection decreased plant allocation to root biomass, increased leaf P, and modulated effects of CO(2) and P addition on mycorrhizal root colonization. These results indicate that plant mutualists and pathogens can alter each other's success, and predict that these interactions will respond to increased resource availability and elevated CO(2). Together, our findings highlight the importance of interactions among multiple microorganisms for plant performance under global change.


Asunto(s)
Dióxido de Carbono/farmacología , Micorrizas/fisiología , Virus de Plantas/fisiología , Plantas/microbiología , Plantas/virología , Simbiosis/efectos de los fármacos , Biomasa , Bromus/efectos de los fármacos , Bromus/microbiología , Bromus/virología , Recuento de Colonia Microbiana , Micorrizas/efectos de los fármacos , Micorrizas/crecimiento & desarrollo , Fósforo/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Virus de Plantas/efectos de los fármacos , Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/microbiología , Poaceae/virología , Especificidad de la Especie , Carga Viral
17.
Ecol Appl ; 20(2): 582-92, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20405808

RESUMEN

Many emerging pathogens infect both domesticated and wild host species, creating the potential for pathogen transmission between domesticated and wild populations. This common situation raises the question of whether managing negative impacts of disease on a focal host population (whether domesticated, endangered, or pest) requires management of only the domesticated host, only the wild host, or both. To evaluate the roles of domesticated and wild hosts in the dynamics of shared pathogens, we developed a spatially implicit model of a pathogen transmitted by airborne spores between two host species restricted to two different landscape patch types. As well as exploring the general dynamics and implications of the model, we fully parameterized our model for Asian soybean rust, a multihost infectious disease that emerged in the United States in 2004. The rust fungus Phakopsora pachyrhizi infects many legume species, including soybeans (Glycine max) and the nonnative invasive species kudzu (Pueraria montana var. lobata). Our model predicts that epidemics are driven by the host species that is more abundant in the landscape. In managed landscapes, this will generally be the domesticated host. However, many pathogens overwinter on a wild host, which acts as the source of initial inoculum at the start of the growing season. Our model predicts that very low local densities of infected wild hosts, surviving in landscape patches separate from the domesticated host, are sufficient to initiate epidemics in the domesticated host, such that managing epidemics by reducing wild host local density may not be feasible. In contrast, managing to reduce pathogen infection of a domesticated host can reduce disease impacts on wild host populations.


Asunto(s)
Glycine max/microbiología , Modelos Biológicos , Enfermedades de las Plantas/microbiología , Pueraria/microbiología , Monitoreo del Ambiente , Interacciones Huésped-Patógeno
18.
Ecol Lett ; 13(3): 394-407, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20100237

RESUMEN

Ecology Letters (2010) 13: 394-407 Abstract Mycorrhizal fungi influence plant growth, local biodiversity and ecosystem function. Effects of the symbiosis on plants span the continuum from mutualism to parasitism. We sought to understand this variation in symbiotic function using meta-analysis with information theory-based model selection to assess the relative importance of factors in five categories: (1) identity of the host plant and its functional characteristics, (2) identity and type of mycorrhizal fungi (arbuscular mycorrhizal vs. ectomycorrhizal), (3) soil fertility, (4) biotic complexity of the soil and (5) experimental location (laboratory vs. field). Across most subsets of the data, host plant functional group and N-fertilization were surprisingly much more important in predicting plant responses to mycorrhizal inoculation ('plant response') than other factors. Non-N-fixing forbs and woody plants and C(4) grasses responded more positively to mycorrhizal inoculation than plants with N-fixing bacterial symbionts and C(3) grasses. In laboratory studies of the arbuscular mycorrhizal symbiosis, plant response was more positive when the soil community was more complex. Univariate analyses supported the hypothesis that plant response is most positive when plants are P-limited rather than N-limited. These results emphasize that mycorrhizal function depends on both abiotic and biotic context, and have implications for plant community theory and restoration ecology.


Asunto(s)
Hongos/fisiología , Micorrizas/fisiología , Plantas/microbiología , Simbiosis , Ecología , Fijación del Nitrógeno , Desarrollo de la Planta , Microbiología del Suelo
19.
Proc Natl Acad Sci U S A ; 104(43): 16976-81, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17940003

RESUMEN

Patterns in food-web structure have frequently been examined in static food webs, but few studies have attempted to delineate patterns that materialize in food webs under nonequilibrium conditions. Here, using one of nature's classical nonequilibrium systems as the food-web database, we test the major assumptions of recent advances in food-web theory. We show that a complex web of interactions between insect herbivores and their natural enemies displays significant architectural flexibility over a large fluctuation in the natural abundance of the major herbivore, the spruce budworm (Choristoneura fumiferana). Importantly, this flexibility operates precisely in the manner predicted by recent foraging-based food-web theories: higher-order mobile generalists respond rapidly in time and space by converging on areas of increasing prey abundance. This "birdfeeder effect" operates such that increasing budworm densities correspond to a cascade of increasing diversity and food-web complexity. Thus, by integrating foraging theory with food-web ecology and analyzing a long-term, natural data set coupled with manipulative field experiments, we are able to show that food-web structure varies in a predictable manner. Furthermore, both recent food-web theory and longstanding foraging theory suggest that this very same food-web flexibility ought to be a potent stabilizing mechanism. Interestingly, we find that this food-web flexibility tends to be greater in heterogeneous than in homogeneous forest plots. Because our results provide a plausible mechanism for boreal forest effects on populations of forest insect pests, they have implications for forest and pest management practices.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Insectos/fisiología , Abies/parasitología , Animales , Especificidad de la Especie
20.
Integr Comp Biol ; 44(2): 152-62, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21680495

RESUMEN

Climate change will likely alter the distribution and abundance of northern mammals through a combination of direct, abiotic effects (e.g., changes in temperature and precipitation) and indirect, biotic effects (e.g., changes in the abundance of resources, competitors, and predators). Bioenergetic approaches are ideally suited to predicting the impacts of climate change because individual energy budgets integrate biotic and abiotic influences, and translate individual function into population and community outcomes. In this review, we illustrate how bioenergetics can be used to predict the regional biodiversity, species range limits, and community trophic organization of mammals under future climate scenarios. Although reliable prediction of climate change impacts for particular species requires better data and theory on the physiological ecology of northern mammals, two robust hypotheses emerge from the bioenergetic approaches presented here. First, the impacts of climate change in northern regions will be shaped by the appearance of new species at least as much as by the disappearance of current species. Second, seasonally inactive mammal species (e.g., hibernators), which are largely absent from the Canadian arctic at present, should undergo substantial increases in abundance and distribution in response to climate change, probably at the expense of continuously active mammals already present in the arctic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...